Wall slip, shear banding, and instability in the flow of a triblock copolymer micellar solution.

نویسندگان

  • Sébastien Manneville
  • Annie Colin
  • Gilles Waton
  • François Schosseler
چکیده

The shear flow of a triblock copolymer micellar solution (PEO-PPO-PEO Pluronic P84 in brine) is investigated using simultaneous rheological and velocity profile measurements in the concentric cylinder geometry. We focus on two different temperatures below and above the transition temperature T{c} which was previously associated with the apparition of a stress plateau in the flow curve. (i) At T=37.0 degrees CT{c}, the stress plateau is shown to correspond to stationary shear-banded states characterized by two high shear rate bands close to the walls and a very weakly sheared central band, together with large slip velocities at the rotor. In both cases, the high shear branch of the flow curve is characterized by flow instability. Interpretations of wall slip, three-band structure, and instability are proposed in light of recent theoretical models and experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatiotemporal oscillations and rheochaos in a simple model of shear banding.

We study a simple model of shear banding in which the flow-induced phase is destabilized by coupling between flow and microstructure (wormlike micellar length). By varying the strength of instability and the applied shear rate, we find a rich variety of oscillatory and chaotic shear banded flows. At low shear and weak instability, the induced phase pulsates next to one wall of the flow cell. Fo...

متن کامل

Inertio-elastic instability in Taylor-Couette flow of a model wormlike micellar system

In this work, we use flow visualization and rheometry techniques to study the dynamics and evolution of secondary flows in a model wormlike micellar solution sheared between concentric cylinders, i.e., in a Taylor-Couette (TC) cell. The wormlike micellar solution studied in this work contains cetyltrimethylammonium bromide (CTAB) and sodium salicylate (NaSal). This system can be shear banding a...

متن کامل

Competition between shear banding and wall slip in wormlike micelles.

The interplay between shear band (SB) formation and boundary conditions (BC) is investigated in wormlike micellar systems (CPyCl-NaSal) using ultrasonic velocimetry coupled to standard rheology in Couette geometry. Time-resolved velocity profiles are recorded during transient strain-controlled experiments in smooth and sandblasted geometries. For stick BC standard SB is observed, although depen...

متن کامل

SHEAR BANDING IN WORMLIKE MICELLAR SOLUTIONS Summer School on Neutron Scattering and Reflectometry

Wormlike micelles are an important class of surfactant micellar architectures that find use in applications ranging from consumer products to energy and nanomaterials. Many wormlike micellar systems exhibit a flow instability known as shear banding, characterized by an inhomogeneous flow field. Although many of the proposed mechanisms and theories for shear banding revolve around fluid microstr...

متن کامل

PULSATILE MOTION OF BLOOD IN A CIRCULAR TUBE OF VARYING CROSS-SECTION WITH SLIP FLOW

Pulsatile motion of blood in a circular tube of varying cross-section has been developed by considering slip flow at the tube wall and the blood to be a non- Newtonian biviscous incompressible fluid. The tube wall is supposed to be permeable and the fluid exchange across the wall is accounted for by prescribing the normal velocity of the fluid at the tube wall. The tangential velocity of the fl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 75 6 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2007